Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Article in English | MEDLINE | ID: covidwho-1325516

ABSTRACT

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Subject(s)
Bacteriophages , COVID-19 , Communicable Diseases , Animals , Antibodies, Monoclonal , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Humans , Pandemics , SARS-CoV-2
2.
Cell Rep ; 36(4): 109433, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1300649

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Humans , Mutation/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Nat Commun ; 12(1): 1577, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132068

ABSTRACT

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Affinity , COVID-19/epidemiology , Cell Line , Chlorocebus aethiops , Gene Library , Healthy Volunteers , Host Microbial Interactions/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Models, Molecular , Mutation , Neutralization Tests , Pandemics , Peptide Library , Protein Interaction Domains and Motifs , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL